بارش تجمعی
بارش تجمعی 24 ساعت آینده
بارش تجمعی 48 ساعت آینده
بارش تجمعی 72 ساعت آینده
بارش تجمعی 96 ساعت آینده
بارش تجمعی 120 ساعت آینده
import openmeteo_requests
import pandas as pd
import requests_cache
from retry_requests import retry
# Setup the Open-Meteo API client with cache and retry on error
cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
openmeteo = openmeteo_requests.Client(session = retry_session)
# Make sure all required weather variables are listed here
# The order of variables in hourly or daily is important to assign them correctly below
url = "https://air-quality-api.open-meteo.com/v1/air-quality"
params = {
"latitude": 34.4611,
"longitude": 45.8626,
"hourly": ["pm10", "pm2_5", "dust"],
"past_days": 1,
"forecast_days": 7
}
responses = openmeteo.weather_api(url, params=params)
# Process first location. Add a for-loop for multiple locations or weather models
response = responses[0]
print(f"Coordinates {response.Latitude()}°N {response.Longitude()}°E")
print(f"Elevation {response.Elevation()} m asl")
print(f"Timezone {response.Timezone()}{response.TimezoneAbbreviation()}")
print(f"Timezone difference to GMT+0 {response.UtcOffsetSeconds()} s")
# Process hourly data. The order of variables needs to be the same as requested.
hourly = response.Hourly()
hourly_pm10 = hourly.Variables(0).ValuesAsNumpy()
hourly_pm2_5 = hourly.Variables(1).ValuesAsNumpy()
hourly_dust = hourly.Variables(2).ValuesAsNumpy()
hourly_data = {"date": pd.date_range(
start = pd.to_datetime(hourly.Time(), unit = "s", utc = True),
end = pd.to_datetime(hourly.TimeEnd(), unit = "s", utc = True),
freq = pd.Timedelta(seconds = hourly.Interval()),
inclusive = "left"
)}
hourly_data["pm10"] = hourly_pm10
hourly_data["pm2_5"] = hourly_pm2_5
hourly_data["dust"] = hourly_dust
hourly_dataframe = pd.DataFrame(data = hourly_data)
print(hourly_dataframe)